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Abstract—Recommendation algorithms have been leveraged in various ways within visualization systems to assist users as they
perform of a range of information tasks. One common focus for these techniques has been the recommendation of content, rather
than visual form, as a means to assist users in the identification of information that is relevant to their task context. A wide variety
of techniques have been proposed to address this general problem, with a range of design choices in how these solutions surface
relevant information to users. This paper reviews the state-of-the-art in how visualization systems surface recommended content
to users during users’ visual analysis; introduces a four-dimensional design space for visual content recommendation based on a
characterization of prior work; and discusses key observations regarding common patterns and future research opportunities.
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1 INTRODUCTION

Visual analytics as a discipline was born from the recognition that
the process of deriving meaningful insights from large volume, high
dimensional, heterogeneous, and often conflicting sources of data is
fraught with an array of challenges [70]. Much of the research in this
area is motivated by complex information problems in which users
must work to discover relevant data elements, to view those data from
different perspectives, and to progressively connect disparate pieces of
information to build an understanding of their analytical target as part
of an ongoing sensemaking process [55].

Reflecting on the scale of the challenge in terms of both volume and
complexity of information, visual analytics techniques generally aim to
combine computational techniques with human analysis activities in
a cooperative fashion to exploit the complementary strengths of both
computer and human [61]. Moreover, the proliferation of machine
learning has led to a wide variety of proposals for how to leverage
mixed-initiative and data-driven algorithms during visual analysis [26].

Perhaps not surprisingly, researchers have experimented with many
ways in which the combination of algorithmic and human approaches
could best be leveraged. This includes, for example, “user-in-the-loop”
approaches in which users can provide various forms of guidance to
the underlying algorithms (e.g., [12, 69]). It also includes “analytics-in-
the-loop” approaches in which model-driven algorithms are designed
to provide various forms of assistance to human analysts.

This latter category–using computational approaches to help a hu-
man user make analytical progress–can itself come in many forms.
One frequent approach is to algorithmically recommend specific visu-
alizations (e.g., [33, 49]). In this formulation, the algorithmic problem
is to determine the “best” view of a given set of data in a particular
task context. Alternatively, and more relevant to the work presented
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in this paper, computational approaches have also been proposed to
recommend specific content to users. In this problem, the goal is to
algorithmically help users more effectively identify new information
that is relevant to their analytic context.

Visual analytics systems that support this type of content recommen-
dation must include several different components. First, the system
must maintain some representation of a user’s current analytic context.
Second, the system must include some form of recommender which,
given the representation of a user’s context, evaluates new information
to identify which content should be recommended. Finally, recom-
mended content must be surfaced to the user through the user interface
of the visual analytics system.

It is this last element—the way in which recommended content is
surfaced to users during visual analysis—that is the focus of this paper.
By design, content recommendation algorithms are used to identify
new content relevant to the user’s analytic context which they might not
identify on their own. This makes content recommendation a potentially
powerful tool in support of the sensemaking process. However, the way
in which recommended content is incorporated into a user’s analytic
workflow can influence the utility of the recommended content itself.
The utility is heavily influenced by the design choices of how, when,
and where that content is presented to the user.

To better understand the design space for the content recommen-
dation within visual analytics platforms, and motivated by our own
work on this topic [83], we conducted a formal survey of the visual
analytics literature to identify prior efforts at content recommendation.
We searched the literature for adaptive visualization systems that algo-
rithmically identify and surface new content with the aim of helping
users discover additional relevant information given their analytical
context.

Based on an analysis of the identified articles, a four-dimensional
design space is proposed that captures the primary design choices for
communicating recommended content during visual analysis. The
papers found in the search are then characterized using the proposed
design space to identify common patterns, rare design choices, and
potential opportunities for future research.

In this way, the research contributions of this paper include: (1) a
systematic review of the literature to identify the state-of-the-art in how
visualization systems surface recommended content during visual anal-
ysis; (2) a design space for visual content recommendation interfaces;
and (3) identification of both common approaches and opportunities
for future research.

The remainder of this paper is organized as follows. A brief review
of related work is provided in Section 2 to better frame the scope of our
literature survey. Section 3 then introduces the methodology behind the
survey including the search strategy. The design space is presented in
Section 4 and used to characterize the papers identified in the literature
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search. Finally, before concluding, a discussion in Section 5 identifies
key patterns, limitations, and opportunities for future research.

2 RELATED WORK

The literature survey and design space presented in this paper focus
on the ways in which content recommendations are surfaced to users
during visual analysis. This topic is closely related to two broader
areas of research that have received significant attention in recent years.
These include both (a) visualization recommendation systems, and
(b) more wide-ranging research on recommender systems within the
human-computer interaction (HCI) community.

2.1 Visualization Recommendation
Algorithmic solutions that recommend or automatically construct visual
representations of data have been studied for several decades (e.g., [57]).
Broadly speaking, these types of visualization recommendation systems
will automatically configure and suggest one or more visual representa-
tions for a given set of data based on either data properties, a user’s task
context (including, potentially, user preferences), or both. Given these
inputs, a visualization recommendation system will typically aim to
determine the best visualizations to use with the given dataset in order
to help the user achieve some analytical goal [73].

A variety of techniques have been proposed to accomplish this type
of visualization recommendation, ranging from rule or pattern-based
approaches that infer visualization requirements from user activity
(e.g., [30]) to machine learning models trained on large numbers of
example visualizations (e.g., [33, 49]).

Despite the variety in both the input and the computational ap-
proaches through which visualization recommendations are generated,
these systems share a common goal: given an input dataset and per-
haps some additional information about the user’s task or preferences,
recommend one or more views of the input data. These approaches
suggest forms or styles of visualization, but do not aim to inject any
new content into a user’s analysis [8]. In sharp contrast, the focus
of this paper is on the content recommendation during visualization
rather than visualization recommendation as we have just defined it.
That is, we focus on papers that (a) describe recommendations of new
content that should be brought to the user’s attention, and (b) how those
recommendations are surfaced to the user. For this reason, visualization
recommendations papers (such as those cited in this subsection) are
considered outside of the scope for this paper.

2.2 Recommendation Systems in HCI
The HCI research community has an extensive record of impactful
research exploring different types of recommendation systems in appli-
cation scenarios that extend well beyond visualization. Fundamentally,
the term recommendation system (or recommender system) is used to
describe any system that makes content suggestions to a user based
upon a computed measure of relevance between said content and user’s
interest [54].

Usually, recommender technology is provided in combination with
other information access techniques, such as query-based search [22].
For example, recommendation systems are used widely on websites
such as search engines or shopping websites to recommend related doc-
uments to read (e.g., [11]) or related products to purchase (e.g., [66]),
respectively. They are also widely used on online social media plat-
forms to recommend videos, posts, and other content based on both
user’s current interactive activity and models of users’ historical prefer-
ence (e.g., [21]).

Many different approaches to solving the content recommendation
problem have been proposed including content-based filtering meth-
ods, collaborative filtering methods, and hybrid methods. Research
on these topics has often focused on optimizing quantitative measures
of recommendation accuracy [63]. However, researchers have also
recognized the critical importance of user experience and interaction
design [41]. This has, for example, let to suggested “design patterns”
for user interfaces within the context of recommender systems [22].
The contributions of this paper are similarly focused on content recom-
mendation and the ways in which these recommendations are surfaced

to users. However, unlike past work, this paper aims to specifically
study ways in which content recommendations are surfaced within
visual analytics platforms.

3 METHODOLOGY

The design space proposed in this paper is derived from an analysis
of articles identified through a formal literature survey. This section
provides an overview of the survey strategy and the analysis process
used to inform the design space. The numbers of articles found at each
stage of the search process are also reported.

3.1 Search and Screening

The literature search performed for this paper followed a search strategy
and screening process that adheres to the recommended procedures
specified in the PRISMA standard (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses) [47]. PRISMA defines a multi-
stage procedure that has been widely adopted in health and medical
fields as a “best practice” for systematic literature reviews. PRISMA
also defines a standardized flow diagram to depict the various stages
and the number of articles considered, included, and/or excluded at
each step.

The PRISMA flow diagram for the literature survey in this paper is
shown in Figure 1. As shown in the diagram, articles were identified
from two different sources: IEEE Xplore [34] and the ACM Digital
Library [1]. A full-text keyword search was performed within both
online digital libraries to identify candidate articles. Given the focus of
the search, “adaptive visualization(s)” was the phrase used as search
terms. The keywords were free-text and not selected from a controlled
vocabulary. Searches were conducted in both IEEE Xplore digital
library and ACM digital library in December 2021.

This choice of keywords, selected to reflect the focus of this sur-
vey on methods of visually surfacing recommended content within
visualization-based interfaces, was made after experimentation with
various alternatives in both the IEEE and ACM digital libraries, as well
as informal exploratory searches made through Google Scholar [29].
Alternatives explored included, for example, “visualization recommen-
dation.” However, this phrasing is widely used to describe systems
that recommend the form of visualization rather than the content (see
Section 2.1). As a result, it returned articles that were out of scope
and missed many important papers that deserved to be included. Al-
ternatively, a search for “content recommendation” was excessively
broad due to the generic terms used. This search therefore returned
an enormous number of articles, many of which were not related to
content recommendation at all as defined in this paper (much fewer
content recommendations in the context of visualization).

The choice of scoping the search to IEEE and ACM digital libraries
reflects the central role these two repositories have in archiving peer-
reviewed high-quality articles relevant to visualization and recommen-
dation research. Together, these two resources index a broad range
of technical journals and conference proceedings, and they include a
number of the leading publications in the disciplines relevant to the
scope of this search.

In total, 175 articles were identified via the specified keywords. A
screening process was followed to remove duplicates and exclude irrel-
evant articles by examining titles and abstracts. This process resulted
in a total of 92 articles for potential inclusion in the survey.

The choices of keywords and digital libraries used in the search
clearly have a significant impact on the set of articles. The impacts of
these choices are discussed in more detail along with other limitations
of our approach in Section 5.3.

3.2 Eligibility Assessment

The 92 articles that emerged from the screening process were inspected
more closely for eligibility via a full-text assessment. This step ensured
that papers which appeared relevant from the title and abstract screening
were indeed appropriate for inclusion based on the research topic. This
further narrowed the number of candidate articles to 46.



Once articles were determined to be relevant in terms of topic, two
additional eligibility constraints were applied which excluded 23 ad-
ditional articles. First, papers were required to present a working
prototype to ensure that our survey focused on designs that were
used in actual implementations from prior work. This requirement
eliminated 12 articles that proposed theoretical concepts or compu-
tational algorithms [6, 7, 16, 23, 24, 28, 31, 36, 51, 56, 59, 62], and 8 pa-
pers that included results from user studies without prototypes of in-
teractive visualizations [9, 10, 19, 40, 53, 68, 71, 79]. Second, because
content recommendation is a dynamic process that occurs while a user
interacts with a system, papers that met the prototype requirement were
also required to describe user interaction. This requirement resulted in
the elimination of 3 additional papers [18, 48, 81].

Finally, we removed 6 papers [2, 20, 60, 76, 78, 82] where the proto-
types were deemed not relevant to the scope of the study, were described
with insufficient detail to include, or were identified as duplicates that
described the same prototypes as other papers in our collection. These
steps reduced the included set to 17 papers.

3.3 Additional Search Following Citation Links
Recognizing the limitations of keyword search, the research team en-
riched the collection of relevant documents by examining all citations
from the 17 papers which emerged from the eligibility determination
process. Every document cited in the references section for these 17
documents went through the same screening and eligibility steps as
the original articles found in the IEEE and ACM digital libraries. This
process resulted in 9 additional articles being included for a total of 26
articles in the final collection.

3.4 Reference Management
The open-source reference management software Zotero was leveraged
to organize all the references identified in the search and screening
process. In addition, spreadsheets were maintained to keep track of the
overall review process, decisions, and statistics, as reported in Figure 1.

3.5 Meta-Analysis Process
The final set of 26 publications that were included in the survey was
then analyzed by the authors of this paper to extract details regarding
the ways in which the described prototypes surfaced recommended
content to users. Descriptors of various techniques used in prototype
systems in the literature were recorded in a spreadsheet following
an open coding process. The descriptors were iteratively refined and
grouped to identify the key aspects that could be used to characterize
various design choices. New values were added as needed to ensure
that all identified prototypes could be accurately described. As the de-
scriptors were refined, previously characterized papers were revisited
to ensure they were labeled using the latest set of descriptors. At the
end of this process, the descriptors eventually consolidated into the
four-dimensional design space described in Section 4.

As the final design space emerged, two authors (ZZ and WW) revis-
ited all articles included in the search and formally characterized each
article using terms from the design space. The two authors worked
independently and then resolved disagreements through discussion and
resolution. In rare circumstances, disagreements led to minor revisions
of how dimensions in the design space were described. When this
occurred, previously characterized papers were revisited to ensure they
were consistently analyzed. The final results of this process are illus-
trated in Figure 3 and discussed in detail throughout the remainder of
this paper.

4 THE DESIGN SPACE

This section introduces a four-dimensional design space which provides
a framework for describing how content recommendation capabilities
are made visible to users within visualization systems. As described in
Section 3, the design space was derived from an analysis of relevant
papers identified through a systematic review of the research literature.
This section first introduces the dimensions of this design space, and
then uses the design space to categorize and discuss prior research
identified in the literature review.

4.1 Dimensions of the Design Space

Informed by our analysis of the publications identified in our litera-
ture search, we define four key dimensions that help characterize the
interface design for content recommendation within visual analytic
systems: Directness, Forcefulness, Stability, and Granularity. This
subsection formally defines each of these dimensions.

We note that we explicitly consider as out of scope issues related
to: (a) the identification of what content should be recommended (e.g.,
similarity measures, individual vs. collaborative approaches, etc.); and
(b) how to model user interests and behaviors as the basis for comput-
ing recommendations. These out-of-scope aspects are essential parts of
recommender systems even when visualization is not employed [35],
and they are key aspects to much of the related work referenced in Sec-
tion 2.2. However, they are beyond the scope of the design space pro-
posed in this paper because they relate to what content is recommended.
In contrast, the proposed design space is focused on the methods via
which the recommended content is made visible to users.

To help readers understand how these dimensions correspond to
practical design decisions, we provide concrete examples using a
hypothetical visual analytic platform, HVAP. This hypothetical sys-
tem has a relatively simple interface with just two tabs: the first tab
contains visualizations in the form of a scatterplot and a histogram;
the second tab contains a text-based list. This is illustrated in Figure 2.
HVAP is used as an example for explanatory purposes throughout the
remainder of this section.

4.1.1 Directness

The directness dimension captures the relationship between where
a user is interacting with a visualization and the location at which
recommended content is surfaced. The directness dimension takes a
binary value, which can be either Direct or Indirect.

A direct design places recommended content within the same in-
terface component with which the user is interacting. For example,
a direct recommendation for a user interacting with the scatterplot in
HVAP would appear within the same scatterplot.

In contrast, content surfaced via an indirect recommendation would
be visible through another interface component. For example, for a user
interacting with the HVAP scatterplot, indirect recommendations might
be surfaced via the histogram (in the same tab but different component)
or via the text list (in a different tab).

4.1.2 Forcefulness

The forcefulness dimension represents how intrusively the recommen-
dation is surfaced with respect to the user’s workflow. Unlike directness,
forcefulness exists on a scale with different design choices exhibiting
levels of forcefulness. Based on the analysis of the articles identified
in our literature, forcefulness is assessed on a five-point scale with 1
being the least forceful and 5 being the most forceful.

In discussing forcefulness, we use the term context to refer to the
information being displayed within a visual analytics system before
any recommended content is surfaced. When the context is displaced
completely by a recommendation, the user is compelled to attend to
the recommendation before returning to their prior analytical workflow.
For example, if a user is interacting with the scatterplot in HVAP and a
recommendation is displayed such that it obscures the visualizations
entirely, this would forcefully interrupt a user’s analysis. We rank this
type of design as Level 5 on the forcefulness scale.

In contrast, a fully passive design for the recommendation will not
alter the context in any way and will only surface information in out-
of-view locations for users to optionally attend to at some time in the
future. For example, recommended content for the same HVAP user
interacting with the scatterplot could be displayed within the text list.
We rank such a design as Level 1.

Table 1 summarizes the full forcefulness scale using the Level 5 and
Level 1 scenarios as the extremes of the scale. As the table shows, two
factors contribute to the forcefulness of a recommendation: the degree
to which context is displaced, and the visibility of the recommended
content.
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Fig. 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for our searching and screening process.

Visuals List

ListVisuals

Fig. 2. A sketch of HVAP, the Hypothetical Visual Analytics Platform used
as an example when defining the design space proposed in this paper.
The hypothetical interface includes two tabs: one with visualizations and
another with a text-based list.

Example recommendation scenarios within HVAP for each level of
forcefulness are provided in Table 2. The examples all assume users are
interacting with the HVAP scatterplot at the time of recommendation.

We emphasize that while directness and forcefulness can seem sim-
ilar, they are conceptually different dimensions. Using HVAP as an
example, if a user selects a point in the scatterplot, recommended con-
tent can be shown through a tooltip that appears near the hovered point
(direct, forcefulness = 4), or a highlight of the five closest nodes and
a dimming of others (direct, forcefulness = 3). Alternatively, recom-
mended content can be surfaced in the bar chart component, which
is outside of the user’s current focus in the scattterplot (making this
alternative indirect). The interface can highlight relevant bars with
respect to the selected point (indirect, forcefulness = 3), or replace the
original bar chart with a new one (indirect, forcefulness = 5).

4.1.3 Stability
The stability dimension describes the temporal dynamics of when
the content being recommended is updated within the interface. In
this dimension, we only consider updates to the visible portion of a
recommendation system. The underlying algorithm that prepares the

Forcefulness Level Visible Context Visible Recommendation

5 (Most Forceful) None Recommendation only
4 Part Highlighted over context
3 All In context, highlighted
2 All Parallel to the context
1 (Most Passive) All None (Hidden)

Table 1. The forcefulness scale has five levels and depends on two
factors: the degree to which the context is displaced, and the visibility of
the recommended content.

content may update its output on its own schedule that is independent
of when the content in the interface is updated, and this algorithmic
timing is not the focus of this design space. Design choices within
the stability dimension can be classified into three general categories:
periodic, event-driven, and on-demand policy.

Periodic updates occur at a fixed time interval. For example, the
display of recommended content could be revised every 3 seconds.
Event-driven updates occur in response to some underlying system
event. For example, the display of recommended content could be
revised every time a relevant document appears in a data stream, or
in response to a resizing of a user interface window. Event-driven
designs often result in interfaces that exhibit irregularly-timed changes
to the display of recommended content. Both periodic and event-driven
designs result in interface updates that are system initiated. These
designs results in less-stable interfaces which can change the visual
display at times that are not expected and/or inconvenient to a user.

In contrast, on-demand systems provide the most stable experience
because they only update the display of recommended content in re-
sponse to explicit user requests (e.g., clicking on a button to update
recommendations). This design can result in fewer updates and longer
delays between the algorithmic identification of relevant content, but
offers more agency to users and reduces the chances that updates will
disrupt a user’s workflow.



Forcefulness Level Elements Visible to User Recommendation Location

5 (Most Forceful) Only the recommendation The visualization tab, obscuring all context
4 Just the scatterplot and the recommendation Visualization tab, obscuring some context
3 Scatterplot, histogram, and the recommendation Visualization tab, highlighted within the scatterplot
2 Scatterplot, histogram, and the recommendation Visualization tab, shown in parallel to context
1 (Most Passive) Scatterplot and histogram; recommendation not visible List tab (not visible without additional user interaction)

Table 2. Examples of different levels of content recommendation forcefulness for a user interacting with the scatterplot in HVAP (see Figure 2). The
level of forcefulness depends on both (a) what information is visible to users, and (b) the location of the recommendation.

4.1.4 Granularity

The granularity dimension describes the unit of content that is recom-
mended to the user. By “unit of content” we refer to the atomic unit of
information that is being recommended or visualized (e.g. a document;
a semantic concept; a dimension of a dataset; a recommended database
entity such as the data for a single house in a real estate application). To
characterize this aspect, we focus on the difference between (a) the unit
of content that a user is viewing within the context of the recommenda-
tion, and (b) the unit of content being recommended. The granularity
of recommended content can be coarser, similar, or finer compared to
the context.

In practice, recommendations often contain heterogeneous content
with mixed granularities. For example, imagine that HVAP is used to
analyze food pricing strategies in various countries. In this scenario,
imagine the scatterplot is showing the relationship between the whole-
sale and market prices of various food categories (e.g., fruit, dairy,
grains) for a specific country. If the HVAP system recommends in-
formation about the prices of oranges, we would consider this a finer
granularity recommendation because an orange is a narrower concept
than the fruit category. If the system recommends information about
the prices of citrus fruits in another country, we would consider this a
similar granularity recommendation. If the system instead recommends
market research data for both individual fruits as well as the overall
fruit category, it would be a mixed granularity recommendation (finer
and similar).

4.2 Mapping Literature in the Design Space
Given the design dimensions defined above, we used the design space to
characterize each of the 26 papers identified in the literature review. The
findings are reported by dimension, with the full results summarized in
the table in Figure 3. The results show significant variation cross all
dimensions, but also some interesting patterns that speak to design trade-
offs for visualization interfaces that adopt content recommendation
capabilities.

4.2.1 Directness

The directness dimension describes the location at which a recom-
mendation is displayed. Designs that surface recommendations within
the interface component that is being interacted with by a user adopt
a direct design, while those that show recommendations in other in-
terface components are considered indirect. Often, systems provide
recommendations in more than one way. For example, in HVAP, a user
interacting with the scatterplot might see recommendations both within
the scatterplot (direct) and text list (indirect). This can result in designs
that exhibit a combination of both direct and indirect recommendations
within different parts on the platform.

Direct Designs. A total of ten papers [4,5,13,27,38,44,45,64,65,80]
in our survey incorporate at least one form of direct recommendation.
These designs highlight the recommendation content within the inter-
face component that is the focus of user interaction.

A concrete example of this approach can be found in the work of Bae
et al. [5]. They developed an extensible multi-application platform that
included a document visualization as the primary interface to support
document triage. While users examine the visualization to discover
details about various documents, the platform will highlight potentially

relevant documents within the visualization to direct users’ attention to
partial or whole documents that best match users’ interests as inferred
by the system. Because the highlighted recommendations appear within
the same visualization that the users are exploring, this is an example
of direct recommendation design.

Indirect Designs. A total of 21 papers [3, 4, 13–15, 25, 27, 32, 37,
39, 42–44, 46, 50, 52, 58, 72, 74, 77, 80] identified in our review of the
literature demonstrated at least one form of indirect recommendation.
These systems included design elements which surfaced recommended
content through interface components that were outside the user’s
current focus of interaction.

For example, Kim et al. [39] describe a system that recommends
re-expressions of spatial measurements (e.g. 78 miles) from texts in a
way that contextualizes the distances in terms that are more familiar to
a user (e.g. 8 times the distance between your home and your company).
A user’s primary focus of interaction in this system is the text itself, but
the personalized spatial analogies are shown visually using interactive
maps placed beside the text. This placement of the recommendation
in a visualization beside and distinct from the main area of interaction
makes this an example of indirect recommendation.

Most often, indirect recommendations are located within an interface
component that is visible and alongside the user’s primary area of
interaction. In some rare cases, however, indirect recommendations
have been placed on a separate page that requires additional interactions
to be revealed. For example, Brusilovsky et al. [14] presented a system
providing personalized recommendations for a structured repository of
educational examples. Users would typically interact with the examples
and browse the repository list on the primary component of the interface.
The system then included a secondary display area which visualized
a 2D layout of recommended concepts (selected from the pre-defined
repository). Users need to perform an additional click to view these
recommendations.

Similarly, the educational system proposed by Ahn &
Brusilovsky [3] uses a secondary interface to share recommen-
dations, which requires an additional click to access. The system
described in that paper adopts a primary visualization interface that
uses a Self Organizing Map (SOM) to organize educational resources
by topic. Users can click to access a list of recommended topics that
are displayed on a secondary interface.

Discussion. Overall, about two-fifths of the papers in our survey
adopt a direct design. In contrast, more than four-fifths of the papers
adopt an indirect design. This makes indirect designs approximately
twice as common. Moreover, half of the direct-design systems also
provide indirect recommendations.

Direct designs make recommendations more visible by placing them
squarely within a user’s area of attention. This approach, therefore, may
give recommendations more visibility even for focused users immersed
in complex cognitive tasks. However, this same attribute of direct
designs has the potential to be more disruptive to a user’s analytical
work. In addition, because direct approaches must be designed to
visually integrate within an existing view, there are more constraints on
how the recommendations are visually represented.

Indirect designs, because they appear outside of the user’s primary
area of focus, may at times be less visible than their direct counterparts.
However, such designs usually have ample space and freedom of design
for how recommendations are displayed. Moreover, a more forceful
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Directness -- Direct 1 1 1 1 1 1 1 1 1 1 10

Directness -- Indirect 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21

Forcefulness -- 5 1 1 1 1 1 5

Forcefulness -- 4 1 1 1 1 1 1 6

Forcefulness -- 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18

Forcefulness -- 2 1 1

Forcefulness -- 1 1 1 2

Stability -- On-Demand 1 1 1 1 1 1 1 1 1 1 1 1 1 13

Stability -- Event-driven 1 1 1 1 1 1 1 1 1 1 10

Stability -- Periodic 1 1 1 3

Granularity -- Coarser 1 1 1 1 1 1 1 7

Granularity -- Similar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20

Granularity -- Finer 1 1 1 1 1 1 1 1 1 1 1 11

Fig. 3. A systematic review of the literature found a total of 26 papers as illustrated in Figure 1. Each paper was reviewed by two authors and
classified within the proposed four-dimensional design space for the content recommendation within visual analytics platforms. This table summarizes
the findings for all papers across the four design space dimensions: directness, forcefulness, stability, and granularity.

design can be used to overcome limitations in visibility. We hypothesize
that these reasons explain the greater popularity of indirect designs.

4.2.2 Forcefulness

The forcefulness dimension indicates how intrusively the recommen-
dation is displayed, with values ranging from 5 (most forceful) to 1
(least forceful) as defined in Section 4.1. These ratings are based on
two factors which influence the forcefulness of a recommendation: (a)
the degree to which a recommendation displaces a user’s context, and
(b) the visibility of the recommended content. The five levels, derived
from an analysis of the papers collected in our literature review, are
summarized in Table 1.

We note that there are some cases (e.g. [25]) where systems rec-
ommend content in more than one way, at times with different design
choices regarding what contextual information remains visible and how
the recommended content is displayed. In these cases, each approach
to recommendation is judged independently resulting in some papers
being assigned to multiple levels of forcefulness. The remainder of this
subsection describes which papers fit into each of the five levels and
provides concrete examples for each.

Level 5. This level represents the most forceful methods of pre-
senting recommendations, reflecting designs which require a user to
pay full attention to the recommended content. A total of five papers
from our review [13, 42, 50, 58, 77] fit within the Level 5 category for
forcefulness.

Three of these systems are designed to visualize arbitrarily large
datasets [50, 58, 77] through a query-based interaction model. The
systems analyze user queries to determine a recommended subset using
the most appropriate dimensions of the dataset. Each time the user
makes a new request, the visualization is fully refreshed with an entirely
new view of new recommended subset of data.

In other work, a variation of this approach was adopted which used
multiple visualization sub-panels. In this design, some sub-panels were

used to show detailed content recommendation while other sub-panels
were responsible for visualizing the context [42]. This design allowed
recommendations with Level 5 forcefulness which replaced the overall
view with new content in some sub-panels, as well as recommendations
at lower levels that preserved some context in other sub-panels.

Level 4. This level represents the second-most forceful design
choices in our design space as defined in Section 4.1. At this level,
unlike Level 5, a portion of the visible context is maintained as the
recommendation is surfaced, and the recommended content is displayed
in addition to that remaining context.

A total of six papers [4, 25, 27, 38, 45, 65] from our search reported
designs with Level 4 forcefulness. A common theme is that these
systems managed the integration of new recommended content by
selectively removing prior content that was deemed least valuable to
maintain within the display, while at the same time maintaining other
prior content that remained important according to some criteria.

This type of design was commonly observed in visualizations that
depict hierarchical structures in some way to manage complexity. For
example, Karsai et al. [38] present a prototype for visualizing prove-
nance data that is represented using graph-based data structures. The
system provides tools for users to interactively view, cluster, and sim-
plify provenance structures. The visualized provenance graphs are
updated in response to user actions, and each time new recommended
nodes can be added while some existing but less relevant nodes will be
removed from view.

Similarly, one of the two designs from d’Entremont and Storey’s
work [25] hides irrelevant nodes and replaced them with a statistically-
derived representation of those hidden nodes. This is done to restrict
the navigation space for a better focus on recommended nodes.

This type of design has also been leveraged in systems that con-
currently visualize some representation of user models alongside a
primary work area. For example, Ahn et al. [4] propose a design that
augments the display of recommended keywords with a representation



of a model of user interests that is constantly updated in response to user
interactions with the overall system. As new recommended keywords
are identified and incorporated into the view, less relevant keywords
are de-prioritized but remain on display. Previous keywords that have
become irrelevant are removed. Similarly, Glowacka et al. [27] propose
a prototype that will hide less relevant keywords from the view with
recommended contents.

Level 3. This level represents systems which maintain the full
current context of a user’s visualization while integrating recommenda-
tions within that context. This was the most frequent design approach
observed in our literature review with 18 papers describing recommen-
dations that fit within the Level 3 category [3–5, 13–15, 25, 32, 37, 39,
42–44, 46, 52, 64, 72, 80].

The most frequently observed design within this category, found in
five of the included papers [5, 43, 44, 64, 80], was the basic highlighting
of recommended content within the existing visual display. As an
example, the system proposed by Bae et al. [5] for document triage
highlights recommended documents within its visualization of multiple
documents, while a details panel showing information about a single
document remains unchanged. Similarly, Lehmann et al. [44] highlights
recommended concept clusters as users interact with a concept that
appear in a visualization of collections of documents.

The second category of recommendation designs in Level 3 takes
a similar but opposite approach: reducing the visual salience of less
relevant information rather than highlighting relevant content. A total
of four papers [25, 32, 43, 80] leverage this approach. For example,
one aspect of a system for visualizing tree-based data proposed by
d’Entremont and Storey [25] reduces the opacity level of less relevant
tree nodes. Similarly, Gobel et al. [32] describe a gaze-based system
that reduces the opacity of map legends that are less relevant to a user’s
interests.

We note that these two approaches (highlighting new recommen-
dations and decreasing the salience of less relevant information) are
compatible strategies that can be used simultaneously. For example,
this is observed in work from Lalle et al. [43], as well as Yelizarov and
Gamayunov [80].

A third common approach, especially with visualizations that adopt a
visual form showing networks or clusters where the position is flexible,
uses the positioning of elements to emphasize a recommendation. For
example, work from Kanai and Hakozaki [37] as well as Leuski and
Allan [46] use positional shifts to move recommended items “close”
to the user in 3D visualizations. More recently, Nazemi et al. [52]
followed a similar philosophy to visualize document relationships.

Two projects from Ahn and collaborators [3,4] adopt a more interac-
tive approach in which a spatial positioning of recommended content is
arranged nearby user-specified “points of interest,” or POIs, based on
relevance. The POIs can then be moved interactively to trigger updates
from the system.

Meanwhile, Brusilovsky et al.’s [14] ADVISE II system adopts yet
another use of position to highlight recommended content. It uses
position to place visual representations of newly recommended infor-
mation close to previously consumed content that it is related to. This
is intended to make it easy for users to find the specific recommended
content they would find most useful based on what past content they
wish to continue examining.

Level 2. This level represents systems which show recommended
content in parallel to the main context. Only one paper in the review
adopted this more subtle form of recommendation, making it the least
common forcefulness level in our survey. This form of recommenda-
tion was observed in work by Vartak et al. [74] on SeeDB, a system
that allows users to build visual queries to a database. The system pro-
vided recommendations to users by adding them to a stack of possible
combinations of visualizations.

Level 1. The least forceful level in our design space shows recom-
mendations only through interface components that are not visible to
users without additional interaction. This is the most subtle form of
visual content recommendation as it requires users to specifically act
before recommended content can be consumed. Two papers from our
literature review fall into this category [3, 14]. Both systems show

recommendations on a separate panel of the interface which is normally
not visible. Users must click to access the recommended content shown
on those panels.

Discussion. Our analysis shows that the extremes of the forcefulness
scale are relatively rare in practice, with the majority of papers falling
within Level 3. Moreover, six of the 14 papers that included more
(Levels 4 or 5) or less (Levels 1 and 2) forceful recommendation designs
also incorporated Level 3 design elements.

Between the two extremes, most papers adopted more forceful de-
signs. This includes five papers that used the most extreme Level 5
compared to just three that used any designs that fit within Level 1
or 2. This appears to reflect a goal for developers or designers to
ensure that users attend to the recommended content. However, es-
pecially given the difficulty that systems often have in modeling user
information needs to generate precise recommendations, there appears
to be an opportunity to more deeply explore the use of less forceful
recommendation designs.

4.2.3 Stability
The stability dimension characterizes how often the recommendation
contents get updated, impacting the perceived stability of the visual
interface for the user. Design choices within this dimension can be
classified into three general categories as defined in Section 4.1: pe-
riodic, event-driven, and on-demand policy. It is possible, in theory,
that systems combine multiple types of update policies to govern when
visible recommendations should be refreshed. However, our review of
the literature found that, in practice, each paper could be classified into
just one category.

Periodic. Systems with periodic stability are those that update the
display of recommended content following a regular time interval (e.g.,
every n seconds). In our review, we found three papers [5, 64, 80] that
followed this approach.

Prototypes in this category typically select a time interval for recom-
mended content updates that is fixed to an arbitrary number of seconds.
The time interval tends to be small (e.g., less than 10 seconds), and is
sometimes determined in part using data collected from users during
usability pilot studies. For example, Silva et al. [64] updates its rec-
ommendations every 2 seconds, while Yelizarov & Gamayunov [80]
updates its recommendations every 5 seconds.

Event-driven. This category represents systems that update their
recommendations in response to specific events. The triggering events
can be either underlying system events or some form of user action
(excluding explicit user requests for recommended content). In total,
ten of the 26 papers [13, 14, 27, 32, 37, 42–44, 65, 72] surveyed included
event-driven updates to recommended content.

The largest group of paper in this category respond indirectly to
user interactions [14, 27, 37, 42, 44, 72]. For example, this category
includes systems that update recommended content in response to user
actions such as a change to visualization settings, selecting or inspecting
visualized objects, or moving and resizing items. We describe this
type of content recommendation as an “indirect” response to user
activity because the user actions are not specifically designed to request
updates to recommended content. Even if content recommendation
were removed from a system, the interactions in this category would
still make sense as part of the system’s interaction design. This is in
contrast with on-demand designs in the stability dimension which we
describe later in this subsection.

Another group of papers in the event-driven category describe pro-
totypes that respond to eye gazes as the triggering event type [13, 32,
43, 65]. One example in this category is recent research by Lalle et
al. [43] in a system designed to support text analysis. The system
updates recommendations in response to user eye fixations (in this case,
a fixation is defined as maintained gaze on the same location for at
least 100 milliseconds). The number of fixations that meet this duration
requirement are tracked, and recommendation updates are triggered
when a sufficient number of fixations have been detected.

The final type of triggering event we observed is data entry [37].
Kanai and Hakozaki describe an approach to the content recommenda-
tion which maintains a model of user preferences to guide the identifi-



cation of related content. The preference model as well as the update
of recommended content within the interface are both triggered by a
user’s data entry actions as they interact with the system.

On-demand. The single largest category in the stability dimension
is on-demand. This descriptor applies to systems that only update the
recommendations made via the user interface in response to explicit
user requests for an update (e.g., by clicking an update button). This
pattern was observed in 13 of the 26 papers in our survey [3, 4, 15, 25,
38, 39, 45, 46, 50, 52, 58, 74, 77].

Discussion. Exactly half of the papers in our literature review
adopted an on-demand policy to update recommendations. The on-
demand approach is most straightforward and predictable for users,
allowing them to control exactly when updates to visualization or other
interface elements will occur. This approach, therefore, provides users
with the most stable user experience. However, on-demand approaches
can also results in delays in the communication of recommended con-
tent. Event-driven and periodic updates may result in faster updates,
but reduce user agency.

It is also important to note the distinction between computational
updates which refresh the content that is identified as best for rec-
ommendation, and interface updates which refresh the recommended
content that is accessible to users via the user interface. Matching the
focus of this paper, the characterizations of prior work reported in this
section focuses on interface update policies. In practice, computation
updates and interface updates can be decoupled and occur on different
schedules.

4.2.4 Granularity
The granularity dimension describes the relationship between the unit
of content being recommended and the unit of content being interacted
with by a user at the time of recommendation. As defined in Section 4.1,
our design space includes three distinct ordinal values for the granularity
dimension: coarser, similar, and finer. Many systems recommended
content at multiple levels of granularity, and our review found at least
one example of every possible combination of the three levels.

Coarser Granularity. Coarser granularity designs provide recom-
mendations at a higher level of abstraction or via a larger unit of in-
formation. A total of 7 papers [3, 14, 38, 44, 45, 58, 77] were found to
recommend content at a coarser granularity.

For example, Roussinov [58] describes a prototype that uses an
Adaptive Self-Organizing-Map (ASOM) to model user queries as a set
of concepts. While users view collections of documents containing
individual concepts, the system can recommend groups of concepts and
concept aggregations based on those groups.

In another example, Ahn & Brusilovsky [3] proposed a visualization
component called KnowledgeSea which supports topic-based naviga-
tion. It recommends higher-level concepts based on the topic contents
and user interests. Along similar lines, Brusilovsky et al. [14] de-
scribe an adaptive navigation panel which records a user’s progress
through information resources and, in response, reveals relevant topic
recommendations. These efforts represent two common use cases for
recommendation at a coarser granularity: topic-level summarization,
and new topic recommendation.

Similar Granularity. Designs that recommend content that has a
similar level of granularity as data the user is already viewing within
the visual interface are describes as having a similar granularity. This
was the most common form of recommendation in our review of the
literature, with 20 out of 26 papers falling into this category [3–5, 13–
15, 25, 27, 32, 37, 39, 42–46, 50, 64, 74, 80].

Consider Bae et al. [5] as one example. The system provides users
with visualizations that depict individual documents, and recommenda-
tions are also provided at the document level. Similarly, Kim et al. [39]
recommends visual representations of analogous distance descriptors
(e.g. a map view showing 8 times the distance between your home
and your company) for spatial measurements (e.g. 78 miles). The
recommended analogies always have a granularity that is similar to the
original expressions.

Finer Granularity. Recommendations that suggest content that is
of a smaller size fit within the finer granularity category. A total of 11

papers [3, 4, 15, 38, 42, 45, 52, 58, 65, 72, 77] were identified as fitting
into the finer granularity category. As one example, Silva et al. [65],
describe an approach which builds a hierarchical view of a large data set,
and then provides users with recommendations for specific variables
or dimensions that yield deeper, lower-level views of the data which
move down the hierarchy.

Discussion. Overall, more than three-fourths of the papers recom-
mend contents with similar granularity. This is perhaps unsurprising as
it is typically the most natural level of recommendation. More specifi-
cally, the data is already represented at the level of granularity being
used to display it within the visual interface. Therefore no extra effort
is required to obtain data at that same granularity. Contrast this with
coarser or finer granularity recommendation approaches. For any sys-
tem to recommend content at a different (coarser or finer) granularity,
additional work is required to retrieve or construct data at the alternative
level of detail.

Similarly, it is often easier to visually integrate similar granularity
recommendations into a user interface because visual representations
for data may already exist. If recommended content is coarser or finer,
visual integration of recommended content to an existing context within
the interface can itself become challenging.

The one exception where changes in granularity become more nat-
ural is in the presence of hierarchical data. The hierarchical structure
works naturally with changes in granularity as systems can leverage the
parent-child relationships to move between levels of granularity.

However, while similar granularity designs are the dominant ap-
proach, it is also valuable to observe that a large minority of systems
(10 of 26) provide recommendations at multiple levels of granularity.
In fact, at least one example was found for every possible combination
of the three levels of granularity.

5 DISCUSSION

The four-dimensional design space proposed in Section 4 contributes
a typology for describing strategies in which recommended content is
surfaced in a visual analytic system. This brings several key benefits.
First, it allows various content display strategies developed for differ-
ent applications to be concisely expressed using the same vocabulary
(i.e., values along each dimension in the design space). This enables
researchers to describe and compare specific existing strategies with
others. Second, the design space provides a framework for improv-
ing an existing strategy. Once an existing strategy is mapped in the
design space, design alternatives can be systematically generated by
movements within the dimensions of the design space.

This section discusses the main patterns that emerge from the appli-
cation of this design space to the papers found in our literature review.
This section also highlights important limitations in our approach, and
identifies opportunities for future work.

5.1 Common Trends Across Dimensions
The results of characterizing the papers found in our literature review
using our four-dimensional design space are reported in Section 4.2
and summarized in Figure 3. From these results, we observed a small
number of high-level trends that span across dimensions of the design
space.

First, we observed a relationship between forcefulness and stability
in which designs with higher levels of forcefulness (Level 4 or Level 5)
had more stable update policies. More specifically, of the 11 papers
forcefulness at Level 4 or 5, seven fell into the on-demand category for
stability. This rate for on-demand approaches (7 of 11) is far higher
than the rate for on-demand approaches in less forceful recommen-
dation designs (just 6 of 15). This suggests that designers of more
intrusive recommendations, which can cause greater disruption to a
user’s workflow, felt the need to offer a more predictable experience
for users.

Similarly, we found an apparent link between systems that offer
recommendations are varied granularity with more stable on-demand
designs. More specifically, 7 of 10 papers with multiple levels of granu-
larity fell within the on-demand category for stability. We hypothesize
that the motivation for this pattern is that the presence of heterogeneous



granularities of recommendation results in a more complex, cognitively
demanding information environment, and that this in turn suggests the
need for a more stable recommendation workflow.

Returning to forcefulness, we observed that the most common force-
fulness category, Level 3, was typically associated with similar granu-
larity of recommendations (16 of 18). These two approaches are highly
compatible in that Level 3 forcefulness designs integrate recommenda-
tions within the existing visual context. This can most easily be done
with recommended content that is of the same type and granularity as
the already visualized information. Recommendations that are of non-
similar granularity, meanwhile, occur more frequently with either very
forceful or less forceful designs. These extremes of the forcefulness
spectrum provide designers with more freedom because the display of
recommended content becomes disconnected from the existing visual
display.

5.2 Content Recommendation as User Guidance
Content recommendation can be viewed as a specific form of user
guidance. Ceneda et al. [17] define guidance in visual analytics as a
dynamic process that aims to help users make progress in their analyses.
Content recommendation is typically employed to provide users with
new information that is related to their analysis, and therefore fits within
the general definition of a user guidance technique.

Ceneda et al. defined a general model which describes alternative ap-
proaches for user guidance at a high level. This model included several
dimensions including the type of knowledge gap that an approach is
intended to resolve, the inputs and outputs required, and the degree of
guidance. Given the more focused scope of our proposed design space
(see Section 4.1), the dimensions we proposed are largely independent
of those defined by Ceneda et al.

However, there is some alignment between our forcefulness dimen-
sion and Ceneda et al.’s degree dimension [17]. Ceneda et al. define
guidance degree using three characteristic scenarios: orienting, direct-
ing, and prescribing. Orienting helps users understand options for nav-
igation without suggesting system-generated recommendations as to
which are better options. In our model, recommended content displayed
to achieve an orienting function would map to Level 3 forcefulness. In
contrast, directing methods communicate system-generated preferences.
In our model, this would map to Level 3 or 4 forcefulness depending
on how the interface was designed. Meanwhile, guidance that Ceneda
et al. describe as prescribing would fit within Level 4 forcefulness in
our model. Ceneda et al. also describe fully-automated guidance which
in our model would be considered Level 5 forcefulness.

5.3 Limitations
As with all studies based on a systematic review of the literature, the
findings in this paper are inherently dependent on the choice of search
terms. As outlined in Section 3.1, the focus of this search was difficult
to specify in terms of keywords without being overly narrow or overly
broad. The final choice of terms was a compromise that yielded relevant
articles without also returning result sets in the tens or hundreds of
thousands which would make a full-text review logistically impossi-
ble. The choice to scope the search to IEEE Xplore the ACM Digital
Library also helped focus the scope of the search, but at the expense
of eliminating some potentially relevant journals or proceedings. We
attempted to mitigate these limitations by adding an extra step to our
search process. As described in Section 3.3, we included in our search
all papers cited by the papers identified in our original keyword search.
This did identify a small number of additional papers from beyond the
IEEE and ACM archives. However, we acknowledge that relevant arti-
cles may still fall out of our search (e.g., recommendations for next-step
actions in analytical workflows [67, 75]). Nevertheless, we believe that
the general nature of our proposed design space means that it can also
be applied in principle to characterize many approaches described in
papers missed by our search.

Another limitation relates to our use of an open coding process
described in Section 3.5. Alternative coding approaches could have
been followed and might have produced somewhat different results.
Relatedly, we recognize that the manual tagging of papers within our

design space includes some subjective judgements that are necessarily
made based only on the authors’ reading of the published articles. To
mitigate the risk of errors, every paper was reviewed by two people who
worked independently. However, mischaracterizations are still possible
based on the limited information provided in some articles.

5.4 Opportunities for Future Work
There are several possible directions for future research that builds on
the results presented in this paper. For example, the relationships be-
tween dimensions highlighted in Section 5.1 are based on observations
from the analysis of the literature. Experimental studies designed to bet-
ter understand the potential design tradeoffs between those dimensions
would be a valuable next step.

In addition, the results summarized in Figure 3 highlight some areas
of the design space are under-explored. Perhaps most interestingly,
there is relatively little work exploring more “subtle” aspects of content
recommendation. This includes low forcefulness designs, and designs
with periodic updates in the stability dimension. These represent oppor-
tunities for research exploring potential use cases where these types of
designs might be beneficial. For example, it is possible that these subtle
design choices could potentially allow for the display of recommended
content in a way that supports serendipitous discovery with negligible
impact on users’ workflows.

Finally, while this paper has focused on the visual display of rec-
ommended content, future studies examining design decisions for the
underlying models and algorithms that support content recommenda-
tion could be valuable. Moreover, results from such a study might help
uncover how those models and algorithms can directly influence the
eventual visual presentation of recommended content. For example,
approaches that leverage hierarchical models might encourage visual
designs that surface recommendations at multiple levels of granularity.

6 CONCLUSION

In this paper, we explored the design space for surfacing recommended
content within visual analytics platforms. Like visualization recom-
mendations, which aim to recommend the best form of a visualization
to users to advance their analytic goals, content recommendation tech-
niques aim to help users discover related information that they might
otherwise overlook. More specifically, content recommendation in
visual analytics requires technologies which capture some form of
model of a user’s information needs given their analytic task context,
use that model to identify relevant content, and then surface that rec-
ommended content within the user interface to communicate those
recommendations to users.

Content recommendation can take many forms, and a wide variety
of techniques have been proposed to address this general problem.
Moreover, the interface for exposing recommended content to users
requires a large number of design decisions which can directly impact
the usability and utility of the underlying algorithmic recommendation
capabilities.

This paper describes our efforts to develop a better understanding
of the design space for how recommended content can be surfaced
within visual analytic platforms. First, we conducted a systematic
review of the relevant literature. We then analyzed the publications
identified from that search to develop a multi-dimensional design space
for visual content recommendation. We formally defined four distinct
dimensions in our design space–directness, forcefulness, stability, and
granularity–and we outlined the various design alternative within each
of those dimensions. We then characterized each of the papers identi-
fied in our literature review using the four dimensional design space
to gain insights into the design choices made in prior work. While
the detailed analysis shows a number of key patterns and commonly
adopted approaches, it also highlights that the “best” design solution
is often highly context dependent with each design choice offering it’s
own benefits under certain conditions.
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[10] O. Barral, S. Lallé, and C. Conati. Understanding the effectiveness of
adaptive guidance for narrative visualization: a gaze-based analysis. In
Proceedings of the 25th International Conference on Intelligent User
Interfaces, IUI ’20, pp. 1–9. ACM, New York, NY, USA, Mar. 2020.

[11] J. Beel, B. Gipp, S. Langer, and C. Breitinger. Paper recommender
systems: a literature survey. International Journal on Digital Libraries,
17(4):305–338, 2016.

[12] J. Bernard, M. Hutter, M. Zeppelzauer, D. Fellner, and M. Sedlmair.
Comparing visual-interactive labeling with active learning: An experi-
mental study. IEEE transactions on visualization and computer graphics,
24(1):298–308, 2017.

[13] S. Bonada, R. Veras, and C. Collins. Personalized Views for Immersive
Analytics. In Proceedings of the 2016 ACM Companion on Interactive
Surfaces and Spaces. ACM, 2016.

[14] P. Brusilovsky, Jae-Wook Ahn, T. Dumitriu, and M. Yudelson. Adaptive
Knowledge-Based Visualization for Accessing Educational Examples. In
Tenth Inter. Conf. on Information Visualisation (IV’06). IEEE, 2006.

[15] P. Brusilovsky and T. D. Loboda. WADEIn II: a case for adaptive explana-
tory visualization. In Proceedings of the 11th annual SIGCSE conference
on Innovation and technology in computer science education, ITICSE ’06,
pp. 48–52. ACM, New York, NY, USA, June 2006.

[16] D. Burkhardt, K. Nazemi, and E. Ginters. Innovations in Mobility and
Logistics: Assistance of Complex Analytical Processes in Visual Trend
Analytics. In 61st Inter. Scientific Conf. on Information Technology and
Management Science of Riga Technical University (ITMS). IEEE, 2020.

[17] D. Ceneda, T. Gschwandtner, T. May, S. Miksch, H.-J. Schulz, M. Streit,
and C. Tominski. Characterizing guidance in visual analytics. IEEE trans-
actions on visualization and computer graphics, 23(1):111–120, 2016.

[18] A. Chaudhuri and Han-Wei Shen. A self-adaptive treemap-based technique
for visualizing hierarchical data in 3D. In 2009 IEEE Pacific Visualization
Symposium. IEEE, 2009.

[19] C. Conati and H. Maclaren. Exploring the role of individual differences in
information visualization. In Proceedings of the working conference on
Advanced visual interfaces, AVI ’08, pp. 199–206. ACM, New York, NY,
USA, May 2008.

[20] V. Coors. Resource-adaptive interactive 3D maps. In Proceedings of the
2nd international symposium on Smart graphics, SMARTGRAPH ’02, pp.
140–144. ACM, New York, NY, USA, June 2002.

[21] P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM conference on recom-
mender systems, pp. 191–198, 2016.

[22] P. Cremonesi, M. Elahi, and F. Garzotto. User interface patterns in
recommendation-empowered content intensive multimedia applications.
Multimedia Tools and Applications, 76(4):5275–5309, 2017. Publisher:
Springer Science and Business Media LLC.

[23] T. Deuschel. On the Influence of Human Factors in Adaptive User Interface
Design. In Adjunct Publication of the 26th Conference on User Modeling,
Adaptation and Personalization, UMAP ’18, pp. 187–190. ACM, New
York, NY, USA, July 2018.

[24] G. Domik and B. Gutkauf. User modeling for adaptive visualization
systems. In Proceedings IEEE Visualization ’94. IEEE Comput. Soc.
Press, 1994.

[25] T. d’Entremont and M.-A. Storey. Using a degree-of-interest model for
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